Max Shulaker has built the world’s first functional computer using carbon nanotubes, and he has also designed systems that combine computing, memory, and sensing directly on top of one another on a single chip. Together, these new technologies could increase energy efficiency in computers up to 1,000-fold and make possible a whole world of new devices like low-cost medical sensors.
Carbon nanotubes are “basically a straw that is one carbon atom thin,” says Shulaker. For 20 years, researchers have talked about using them to replace traditional silicon chips. But turning carbon-nanotube transistors and wires into actual devices has proved difficult, and Shulaker has solved several problems to make them work. He developed a way to remove poorly formed carbon nanotubes during production, devised new processes to create wafers of nanotube-based transistors using regular industrial fabrication plants, and invented a new design ensuring that chips built with a certain number of defective tubes are guaranteed to work.
These breakthroughs represent a significant step toward next-generation computer systems far more energy efficient than anything built to date.
Shulaker’s drive led him to work on another feat: monolithic, three-dimensional nanosystems. These fuse microprocessor, memory, and additional functional layers directly on top of one another using carbon nanotubes. Traditional designs have the microchip and memory on separate chips connected by wires. But moving massive quantities of data between those chips leads to slowdowns and wasted energy—a problem known in the industry as “the memory wall.” Shulaker’s 3D nanosystems solve it.